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Abstract This paper addresses the need to know the unsteady forces and moments on an underwater
vehicle in finite-depth water, at small enough submergences for it to be influenced by sea waves. The forces
are those due to the waves themselves, as well as the radiation forces due to unsteady vehicle motions.
Knowledge of these forces and the mass distribution of the vehicle allow solution of the equations of
motion at a single-frequency. Since the theory is linear, any incident wave field can be decomposed into the
sum of many individual single-frequency sinusoidal waves. The motions due to each frequency component
can then be added together to obtain the total predicted vehicle motions. The wave forces are due to the
undisturbed sea wave plus those due to the diffracted wave necessary to satisfy boundary conditions on
the vehicle. The long-used strip theory for ships, with the inviscid-flow approximation, is modified for finite
depth and inclusion of lift forces on the vehicle fins. The two-dimensional solutions for the forces on each
strip are found by a different method than is commonly used for strip theory. This form of the theory
is easier to deal with and requires much less computing time than a fully three-dimensional approach.
Experiments are conducted and their results are compared with the theory. Excellent agreement is found
between the theoretical and experimental wave forces, including the diffracted wave. It is shown that
inclusion of the forces on the fins not only improves the theoretical wave forces, but also brings the results
of theory for the radiation forces and moments due to vehicle motions much closer to the experimental
values that the theory without inclusion of fin lift forces.

Keywords Control fins · Diffraction force · Marine hydrodynamics · Radiation force · Strip theory ·
Underwater vehicles · Wave forces

1 Introduction

During the past two decades, considerable development and use of autonomous underwater vehicles
(AUVs) have taken place. They usually carry sensors for making one or more types of oceanographic
measurements, ranging from chemical and biological sampling to bathymetric mapping, and more. A
national-defense application is detection of underwater, and even buried, mines by sonars on the vehicle.
Measured data is either stored aboard or transmitted to a remote receiver by acoustic communications.
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When an underwater vehicle operates near to the shore, it is usually in shallow water where it undergoes
unsteady motions due to the unsteady forces and moments that sea waves generate on the vehicle. These
motions interfere with the focusing of both acoustical and optical instrumentation. Motions in the vertical
plane can lead to the vehicle hitting the bottom or broaching the free surface. Some positively buoyant
vehicles can be difficult to re-submerge after broaching the surface. Motions in the horizontal plane inter-
fere with course keeping and are troublesome when a vehicle is maneuvering into an underwater dock.
Underwater docking is frequently used for data exchange and for vehicle battery charging.

Usually, wave sizes and water shallowness for safe vehicle operation are empirically determined. This
can be a complex process since the deeper the water, the greater the tolerable wave height.

It would be helpful to be able to predict or estimate the unsteady fluid forces on a vehicle, due to waves
and to unsteady vehicle motions. Together, the predictions can be used to calculate the unsteady vehicle
motions. The term given to the analogous forces and motions of ships is “seakeeping”, and this term
is used here as well. Prediction or estimation of seakeeping forces not only allows motion computation
for developing more rational limits of combinations of wave conditions and water shallowness for safe
operation, but also can be used for optimizing vehicle control systems for shallow-water operation.

It should be noted that the problem of force and motion prediction for AUVs is fundamentally the same
as for manned submarines. Only the scale is different since most AUVs are smaller than submarines.

Streamlined vehicles with a generally slender form will be considered, and for these the hydrodynamic
methods used for the seakeeping of surface ships, with a few adjustments, are applicable. The unsteady
motions which influence the track of the vehicle will be considered and these are: sway, heave, yaw and
pitch. It will be assumed that the coupling of these motions with surge and roll are negligible. The near
vertical plane symmetry of most AUVs makes roll moments and their couplings with other modes very
small. For the special case of a vehicle with substantial deviations from vertical plane symmetry, sway-roll
coupling would have to be added to the theory and solution method.

There is a wave-induced roll moment, even on vehicles with absolute vertical plane symmetry due to the
depth-dependent fluid motion in waves, but the roll moment is very small in comparison to other moments.
However, the methods used here are entirely applicable to roll moments and motions if necessary. Because
of the slenderness of the vehicle, unsteady surge forces are small in comparison to other forces. However,
although the vehicles under consideration are globally slender, they are not locally slender near a blunt
nose. Therefore, if one were to calculate the small surge forces by the strip theory presented here, the
results of the calculation would, almost certainly, be erroneous.

Since a number of approximations will be made in the theory presented here, experimental validation
is necessary to provide confidence in its use. The author and his students have conducted the needed labo-
ratory experiments and some of their results will be provided. The first approximation that will be made in
the theory is neglecting effects of fluid viscosity. Both an order-of-magnitude analysis and the large number
of comparisons between experiments and inviscid theories for ship motions justify this approximation. A
comprehensive discussion of the inviscid-strip theory for ship motions and validating experimental results
made by several investigators, for sway, heave, pitch, and yaw motions, is provided by Beck et al. [1].
This reference also contains a detailed bibliography of the major papers on strip theory. Since viscosity
is neglected, a potential-flow formulation is suggested, even though it necessarily neglects the effects of
vorticity in breaking waves.

Strip theory for the seakeeping of surface ships has been developed over the past 50 years and used
with great success. It is a quasi-two-dimensional theory in which all the potential-flow calculations are
done in two dimensions with final results including the three-dimensional influence of forward speed. The
theory is linearized in the incident-wave amplitude and in the amplitudes of vehicle motions. This allows
the hydrodynamic computations to be done for sinusoidal waves with simulations and statistics for random
waves being done by means of a sum of sinusoids using the methods pioneered by St. Denis and Pierson
[2]. An example of using this method for very long simulations, in a different problem, with high-speed
computation provided by use of Fast Inverse Fourier Transforms can be found in [3].
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In recent years, fully three-dimensional computational methods for seakeeping have been developed,
as exemplified by the computer program SWAN, written under the direction of Sclavounos [4]. However,
these fully three-dimensional programs are quite demanding of computer resources and require a detailed
gridding of both the vessel and the free surface. Therefore, strip theory has been chosen for use here. A
number of specific differences exist between conventional strip theory of surface ships and its application
to submerged vehicles in finite-depth water which will be explained in the sequel.

2 Background

Strip theory of ship motions, as it is normally used, is a mathematically inconsistent approximation in the
sense that some terms of various orders in beam/length are retained and others are absent. The theory
applies to slender vehicles such that dimensions of all immersed cross-sections are small in comparison
to the vehicle length. Some terms in the free-surface boundary condition are ignored, which are smaller
than retained terms only for waves that are short in comparison to a subsequently explained limit based
on the vehicle length, but which are impossible to evaluate within the context of the theory. The principal
justification for use of strip theory is that it gives estimates for seakeeping motions and structural loads in
ships with satisfactory engineering accuracy. Likewise, it is the comparison between theory and experiment
that justifies use of strip theory for underwater vehicles. It is of interest that Ogilvie and Tuck [5] inves-
tigated strip theory for surface ships including all terms of leading order in beam/length and found that
the normally omitted terms are small in comparison to what is retained. Descriptions of the background
of strip theory are provided by Newman [6, Chapter 7] and in the paper: “Ship motions and sea loads” by
Salvesen et al. [7], who also developed a thorough formulation of the theory, hereinafter referred to as STF.
For the past 35 years, STF and developments based on it have been the most widely used strip theories.

The theory provided here for underwater vehicles is a modified form of STF. The modifications used
are:

1. The vehicle is submerged,
2. The water depth is finite,
3. Two-dimensional forces on cross-sections are computed by using Green’s Theorem,
4. The vehicle is presumed to end in a section having zero cross-sectional area so there are no transom

corrections,
5. The hydrostatic restoring coefficients are related only to the vertical distance between the center of

gravity and the center of buoyancy, with no free-surface hydrostatic effects,
6. The forces and moments due to hydrodynamic lift forces on the vehicle fins are included.
7. The fore-and-aft (x) origin of the coordinate system is not taken in the (y, z) plane of the center of

gravity, and is chosen at midship for the calculations. This alters the terms in the “mass matrix” used in
the equation of motion giving it the form used in [1].

The sixth item will be found to be important for four reasons:

a. The fin lift forces in comparison to the remaining forces are larger for a typical underwater vehicle than
for a ship because the relative sizes of the underwater vehicle fins are larger,

b. For a submerged vehicle, the damping forces due to radiated waves are comparatively smaller than for
surface ships.

c. Due to items (a) and (b) above, the damping of underwater vehicle motions is frequently dominated by
fin lift forces and moments.

d. Since the hydrostatic restoring forces are small and the lift forces on the fins at non-zero angles of attack
can be considerable, several terms in the restoring-force matrix due to pitch and yaw motions are either
augmented or entirely due to fin lift forces.
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The same notation for the sectional added mass, damping coefficients and wave forces, as well as whole
vehicle (spring-like) restoring coefficients, added mass, damping coefficients and wave forces and moments
as used in STF are used here. Indices 1, 2, 3, 4, 5 and 6 refer to surge, sway, heave, roll, pitch and yaw,
respectively, although surge and roll and their influences are neglected here on the presumptions that the
vehicle is slender and roll is unimportant for the problems to be solved. The potential-flow (ignoring fin
lift forces) sectional added masses and damping coefficients in heave and sway are called a33, b33, a22 and
b22 where the a’s are two-dimensional added masses, and b’s are two-dimensional damping coefficients.
Further, 2 refers to sway and 3 refers to heave. Likewise, the wave forces on each section are called r2 + h2
and r3 + h3, where r refers to Froude–Krylov forces and h refers to diffraction (scattering) forces. The
phases of wave forces and moments are with respect to the wave crest at the midship location with a time
function exp(iωt), where ω is the circular frequency of encounter of the waves on the vehicle moving at
speed U. The circular frequency of waves in a fixed coordinate systems is called ωo.

pAij and pBij are the complete set of vehicle added mass and damping coefficients due to the integrals
of sectional effects (These are called Aij and Bij in STF, but the altered notation is used here, so the final
notations can be identical after the lift forces on the fins are included). The first subscript, i, refers to
the direction of the associated force and the second subscript, j, refers to the direction of the associated
motion. Likewise, the total vehicle sectional wave forces resulting from an integral of the wave forces over
all cross-sections are called pFi. Since surge and roll motions are neglected, if subscripts i or j are 1 or 4,
the associated matrix or vector element is zero.

Since the vehicle does not pierce the free surface, the only hydrostatic restoring forces are:

pFH4 = pC44η4 and pFH5 = pC55η5, where pC44 = pC55 = ρgV(GB), (1)

where pFH4 is the hydrostatic roll moment (which is ignored here since roll is not considered), pFH5 is
the hydrostatic pitch moment, η4 is the roll angle, η5 is the pitch angle, ρ is the water density, g is the
acceleration of gravity, V is the vehicle volume, and GB is the vertical distance that the center of buoyancy
is above the center of gravity.

The contributions to vehicle damping coefficients and “springlike” restoring coefficients from lift forces
on the fins are called f Bij, and, f Cij, and the contributions to the complex amplitudes of wave forces and
moments due to lift on the fins are called f Fi. There is no contribution to the added masses by the lift forces
on the fins. Thus, the total vehicle added masses, damping coefficients, restoring force (“spring”) constants
and wave-force complex amplitudes, called Aij, Bij, Cij and Fi, respectively, are given by

Aij = pAij, Bij = pBij + f Bij, Cij = pCij + f Cij, Fi = pFi + f Fi. (2)

Quantities with pre-subscript “p” are called non-lifting contributions. The pAij’s, pBij’s, and pFi’s, are
taken as those derived by STF for quantities given there without the pre-subscript, except there are no
transom corrections here, and the two-dimensional added masses, damping coefficients and wave force of
sections are calculated by a different method.

The quantities with pre-subscript “f ” are the sum of contributions from the time-varying lift of all fins
on the vehicle. With U being the forward speed of the vehicle, T being the period of vehicle motions
and c being a typical fin chord length, the ratio c/UT � 1 for almost all operational conditions so that
quasi-steady lift calculations for each fin are expected to provide good estimates.

The coordinate system (x,y,z), the definition of unsteady vehicle motions, and definitions of the sub-
mergence, s, and water depth, h, are shown in Fig. 1, where x is forward, y is to port and z is upward. The
linear motions in the x-, y- and z-directions are η1, η2, and η3, and the rotational motions about these axes
are η4, η5, and η6. Here, only η3 and η5 in the vertical plane and η2 and η6 in the horizontal plane will be
considered. It will be assumed that the vehicle has left–right symmetry leading to decoupling of horizontal
plane motions from vertical plane motions and that coupling effects from η1 and η4 are negligible. The
angle of wave propagation, measured clockwise from the x-axis viewed from above is called θ . For head
seas θ = π . The relationship between fixed frame and encounter circular frequencies is:
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Fig. 1 Coordinate and
motion definitions

ω = ωo − kU cos θ ; (3)

here k is the wavenumber, k = 2π/λ , where λ is the wavelength, and k and ωo are related by the finite-depth
dispersion relation. With the water depth called h this relation is:

ω2
o = kg tanh kh. (4)

3 Seakeeping equations of motion

The forces on the vehicle, both from the sea waves and from the vehicle motions, will be linearized in the
wave amplitude (called α) and the vehicle motions, respectively. Therefore, the response in an arbitrary
sea state can be expressed in terms of the response to sinusoidal waves, over ranges of frequency and prop-
agation angles, through the use of Fourier Integrals. This allows the equation of motion to be developed
for sinusoidal waves.

The form of the equations of motion will be for all six motions to be consistent with other work, but
here all terms involving surge or roll are set to zero. The complex amplitude of any sinusoidal wave is
called α, with associated force and moment complex amplitudes called Fj, j = 1, . . ., 6. The wave ele-
vation is: η = α exp(iωt − kx cos θ + ky sin θ). In water of depth h, the associated velocity potential is
φ = β exp(iωt − kx cos θ + ky sin θ) cosh k(z + h). Physical quantities correspond to the real parts of these,
and similar, expressions. The quantities α and β are related by the free-surface boundary conditions as:

β = iω
k sinh(kh)

α. (5)

The linearized vehicle equations of motion in the presence of a sinusoidal wave as given by STF are:

6∑

k=1

[(Mjk + Ajk)η̈k + βjkη̇k + Cjkηk] = Fj exp(iωt), (6)

where Mjk is the 6 × 6 mass matrix of the vehicle and t is time. Equations and terms with j or k equal to 1
or 4 are ignored.

The equations in the vertical and horizontal planes for a vehicle with port-starboard symmetry, and with
the center of gravity at (xc, 0, zc), are decoupled from each other. The vertical plane equations, including
the C35 term due to fin lift forces, but neglecting the coupling with surge are:

(M + A33)η̈3 + B33η̇3 + (−Mxc + A35)η̈5 + B35η̇5 + C35η = F3 exp(iωt); (7)

(−Mxc + A53)η̈3 + B53η̇ + (I5 + A55)η̈5 + C55η5 = F5 exp(iωt). (8)

In Eq. 7, the term involving C33 has been omitted since it is zero for underwater vehicles. The quantity M
is the mass of the vehicle and I5 is its moment of inertia in pitch; pC35 is zero for underwater vehicles, but
f C35 is not zero if the vehicle has fin lift forces with vertical components.



36 J Eng Math (2007) 58:31–50

The horizontal-plane equations, but with effects of surge and roll omitted, and addition of restoring
forces and moments due to fin lift forces, are:

(A22 + M)η̈2 + B22η̇2 + (Mxc + A26)η̈6 + B26η̇6 + C26η6 = F2 exp(iωt), (9)

(Mxc + A62)η̈2 + B62η̇2 + (A66 + I6)η̈6 + B66η̇6 + C66η6 = F6 exp(iωt). (10)

The terms in Eqs. 7–10 involving xc do not appear in STF because in the coordinate system used there
xc = 0. The quantity I6 is the vehicle moment of inertia in yaw. All the B-terms are augmented by fin
lift forces. The terms involving C in the above two equations do not normally appear in the seakeeping
equations of motion for ships. They appear here as a result of accounting for the lift forces on the fins when
the vehicle has a yaw angle. Transverse velocities on fins, when the vehicle has forward speed, contribute
to the wave forces (F’s) and to the damping coefficients (B’s).

The fluid mechanics part of problem is determination of the A’s, B’s, C’s and F’s. This is done by finding
the terms that are not due to fin lift forces, as formulated in STF, except the sectional strip forces are
calculated differently, and then calculating the terms due to fin lift forces.

4 Added mass, damping, and waveforce coefficients due to non-lifting effects

4.1 Equations relating sectional to total coefficients

As given in STF, but neglecting effects of roll and assuming the submerged vehicle ends in a section of zero
area at the stern (no transom),

pA33 = ∫
a33dx (11) pB33 = ∫

b33dx (12)
pA35 = −∫

xa33dx − U
ω2 B33 (13) pB35 = −∫

xb33dx + UA33 (14)

pA53 = −∫
xa33dx + U

ω2 B33 (15) pB53 = −∫
xb33dx − UA33 (16)

pA55 = ∫
x2a33dx + U2

ω2 A33 (17) pB55 = ∫
x2b33dx + U2

ω2 B33 (18)

pA22 = ∫
a22dx (19) pB22 = ∫

b22dx (20)

pA26 = ∫
xa22dx + U

ω2 B22 (21) pB26 = ∫
xb22dx − UA22 (22)

pA62 = ∫
xa22dx − U

ω2 B22 (23) pB62 = ∫
xb22dx + UA22 (24)

pA66 = ∫
x2a22dx + U2

ω2 A22 (25) pB66 = ∫
x2b22dx + U2

ω2 B22 (26)

pF3 = ρα
∫

(f3 + h3)dx (27) pF5 = −ρα
∫ [

x(f3 + h3) + U
iω h3

]
dx (28)

pF2 = ρα
∫

(f2 + h2)dx (29) pF6 = −ρα
∫ [

x(f2 + h2) + U
iω h2

]
dx (30)

The integrals are over the length of the vehicle, with the effect of longitudinal slopes on the transverse
forces neglected by the slenderness approximation. The f -terms are Froude–Krylov wave forces, and the
h-terms are wave forces due to the diffracted waves.

The wave-excitation force (complex) amplitudes from non-lifting effects are derived by STF in terms of
zero-speed integrals, over the length of the vehicle, of the sectional Froude–Krylov forces, (f2 and f3 in sway
and heave, respectively), and integrals of the sectional diffraction forces, (h2 and h3 in sway and heave,
respectively) plus terms due to forward speed. The Froude–Krylov forces are due to the pressure distri-
butions in the incident wave and the diffraction forces are associated with the diffracted wave generated
because the incident wave orbital velocities have components that are normal to the surface of the vehicle.
The sectional forces are the two-dimensional forces, per unit length for a shape equal to the cross-section
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of the vehicle at each longitudinal location. The way the Froude–Krylov sectional forces will be computed
here are the same as done in STF, except that the finite-depth wave pressures are used here whereas STF
used the infinite-depth pressures. Contrary to the methods used in STF, here a22, b22, a33, b33, h2, and h3
are determined by solving two-dimensional Green’s theorem formulations.

4.2 The free-surface boundary condition

The linearized three-dimensional free-surface boundary condition, in a reference frame moving forward
at speed U, derived by STF and others is:

[(iω − U∂/∂x)2φ + g∂φ/∂z]z=0 = 0, φ = φI , φD, φj, (31)

where φI is the incident wave velocity potential, φD is the diffracted wave potential, and φj is the sinusoidal
radiation potential for oscillation in the jth degree of freedom; j = 2, 3, 5, or 6 are considered here. For a
wave satisfying the dispersion relation (4),the frequency-conversion equation (3) and having x-dependence
exp(−ikx cos θ), Eq. 31 becomes:
[
−ω2

oφ + g
∂φ

∂z

]

z=0
= 0, φ = φI , φD. (32)

The x-dependence of the linearized incident wave (φI) is exactly exp(−ikx cos θ) and this is approxi-
mately true for the diffracted wave (φD). Equation (32) will be used as the free-surface boundary condition
for these potentials. An approximation that forms the basis of strip theory is: ωφj � U∂φj/∂x. Thus the
free-surface boundary condition used for the radiation potentials is
[
−ω2φj + g

∂φj

∂z

]

z=0
= 0. (33)

Most treatises on strip theory for surface ships claim that this approximation makes strip theory strictly
valid for wavelengths that are small in comparison to the length of the ship. The fact that experiments
agree with theory for longer waves is attributed to the fact that hydrostatic and Froude–Krylov forces are
dominant for long waves. However, for underwater vehicles, hydrostatic forces from equivalent incident
waves and unsteady vehicle motions are very much smaller than for surface vessels, Yet, as will be shown
subsequently here, experimental results agree with strip theory for wavelengths that are considerably
longer than vehicle lengths. This leads to a more detailed analysis of the approximation to the linearized
free-surface boundary condition. Expanding Eq. 31, and assuming that O[( ∂φj/∂x

φj
)z=0] ≤ 1

L , where L is the
vehicle length, use of Eq. 33 is equivalent to

ω2 � 4U2

L2 ⇒ 4U2

(Lω)2 � 1. (34)

The actual waves generated by an oscillating object with forward speed are extremely complicated,
but the characteristic wave number in the so called “zero forward speed” problem is related to ω by the
dispersion relation.

4.2.1 Deep-water limit

In deep-water, ω2 = gk. Defining the Froude number as F = U/
√

gL, inequality (34) becomes:

λ � πL
2F2 . (35)

Here λ is the wavelength generated by oscillation at the encounter frequency. A typical AUV Froude
number is 0.3. In this case, inequality (35) gives: λ � 17.5L.
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4.2.2 Shallow-water limit

In shallow water, ω2 = ghk2 and inequality (34) becomes:

λ � π

F

√
hL. (36)

For the operating conditions of, h = L and F = 0.3, λ � 10.5L.
Thus, although the range of validity of strip theory is proportional to L, it is not necessarily true that

validity requires λ � L. Considerably longer waves may result in accurate computations, especially when
“engineering accuracy” allows some error.

4.3 Boundary conditions on the sections and on the domain sides and bottom

A typical section for which the two-dimensional velocity potential and subsequently the pressure forces
are to be computed is shown in Fig. 2. It is a cross-section of an AUV with a circular section hull and a
sonar transducer on each side. The computational domain surrounds the cross-section by a rectangle on
whose top the free-surface boundary condition applies, the bottom on which the boundary condition is
zero normal velocity, and the two sides which are taken far enough from the cross-section for the vehicle-
generated flow to be only outgoing waves. The boundary condition on the sides for the velocity potential,
φ, to represent outgoing waves is:

∂φ

∂n
= −ikφ, where n is the outward normal to the sides. (37)

Numerical testing shows that a domain width of 20 vehicle diameters is sufficient for convergence of
results versus domain width. A further increase in domain width further changes results by less than 0.5%.
Figure 3 shows an example of the heave-force excitation magnitude, |F3|, versus domain width in head seas
on a REMUS Vehicle [8], which has a diameter of 0.19 m, computed by methods that are subsequently
described and for the conditions shown in the figure. Results are shown for speeds of 1.0 and 2.0 m/s.

The boundary conditions on the cross-section depend on the problem to be solved. In all cases, the cross-
sections include fins and transducers so that the non-lifting diffraction and radiation forces and moments
include potential-flow effects of these objects.

For the heave radiation problem with unit amplitude in heave, the normal derivative of the radiation
potential on the surface of the cross-section is:

Fig. 2 Cross-section of an underwater vehicle in a two-
dimensional domain. ω is changed to ωo for the diffraction
problem

Wavelength 6.0 m, Submergence 0.5 m
Depth =2.0 m, Wave Amplitude 4.9 cm

18

18.5

19

19.5

20

0 1 2 3 4 5 6 7

Half Width  (m)

|F
3|

 (
N

) 

U 1.0 U 2.0

Fig. 3 Convergence of computed heave force magnitude
on REMUS with increasing domain width
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dφ/dn = k̂ · n̄, where k̂ is the unit vector in the z (upward) direction.
For the sway radiation problem with unit amplitude in sway, the vehicle-section boundary condition is:

dφ/dn = ĵ · n̄, where ĵ is the unit vector in the y (to port) direction.
For the diffraction problem in sinusoidal waves, dφ/dn on the cross-section is the negative of the normal

velocity distribution imposed by the wave field.

4.4 Calculation of non-lifting two-dimensional forces on the sections

With the boundary conditions specified on a section and the rectangular boundary surrounding it, Green’s
theorem can be used to determine the two-dimensional velocity potential and the associated forces. The
Rankine–Green function G(y, z, η, ζ ) depends on the field point (y, z) and the source point (η, ζ ) through
the distance between them, r = [(y − η)2 + (z − ς)2]1/2 and G is the sink potential,

G = − log r. (38)

The two-dimensional Green’s theorem takes the form:
[∫

s
φ(η, ς)

∂G
∂n(η, ς)

− G
∂φ(η, ς)

∂n(η, ς)

]
ds =

⎧
⎨

⎩

0, (y, z) outside S
−πφ(y, z), on S
−2πφ(y, z), inside S

⎫
⎬

⎭ , (39)

where n is the normal vector drawn out of the fluid on all boundaries. S represents all the boundaries of
the fluid which are a set of lines in this two-dimensional problem; ds is the element of arc length on the
boundaries. In all cases, φ is appended by exp(iωt) which is omitted for clarity. In general, φ is complex and
the real part of φ exp(iωt) is the physical quantity. The two-dimensional potentials are defined as φ22 and
φ33 for the unit amplitude sway and heave motion problems, and as φd for the unit wave-height diffraction
problem.

For both the radiation problems and the diffraction problem ∂φ/∂n is known on the vehicle cross-section
and on the domain bottom which is coincident with the sea bottom. As shown in Fig. 2 and described in the
preceding text, ∂φ/∂n is known in terms of φ on the upper surface and on the sides of the domain. Thus,
the unknowns become the values of φ over all boundaries, which are the cross-section and the surrounding
rectangle. Whereas the imposed heave or sway velocities are the same for all sections of the vehicle, the
imposed wave velocities in the diffraction problem vary, not only around the section, but also between
sections according to the wavelength and propagation angle of the wave. Zero phase of the wave is taken
when the wave crest is over the center (midship) of the vehicle.

To solve Eq. 39 numerically, all the boundaries are divided into panels, and in this work flat panels (lines)
with constant potential strength on each panel are used. In this form, the resulting two-dimensional panel
method becomes a set of linear equations with the number of equations and number of unknown potential
strengths equal to the number of panels. Determination of the two-dimensional velocity potential by use
of Green’s theorem can be used for any sectional shapes.

To use Eqs. 11–26 the “zero forward speed” forces, per unit length, on each section for sway and heave
must be known. As described in STF, using the slender body approximation, the required “zero speed”
radiation forces on each section, oscillating at circular frequency, ω, are determined by

tjj = −ρiω
∫

Cx

njφjdl where j = 2 for sway and j = 3 for heave, (40)

tjj = ω2ajj − iωbjj, j = 2, 3, (41)

where Cx is the contour around a section and ρ is the fluid density. The problem is not exactly the zero-
forward-speed problem. It is a zero-forward-speed problem with oscillation at circular frequency ω which
depends on the forward speed. Equation 40 is constructed as the zero-speed pressure force associated with
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the rate of change of the velocity potential, multiplied by the normal vector, and integrated around the
section. The component opposed to the acceleration is due to the added mass and the component opposed
to the velocity is the damping related to the energy in the outgoing waves produced when the vehicle
oscillates at the wave-encounter frequency.

For the exciting forces, to use (27–30) the zero-forward-speed forces due to the diffracted wave and
those due to the incident wave must be known. The diffracted wave is generated at circular frequency ω

in the reference frame of the vehicle and the incident wave pressure is what would exist in the vehicle’s
absence.

hj = −iω
∫

Cx

njφddl where j = 2 for sway force and j = 3 for heave force, (42)

fj = g
cosh kh

∫

Cx

nj cosh k(h + z)exp[i(−kx cosθ + ky sinθ ]dl. (43)

In Eqs. 40 and 42, the “zero-forward-speed forces” are based on the zero-speed potentials using the
boundary conditions previously explained. Using the slender-vehicle and limited wavelength approxima-
tions described above, STF, using some of the results of Ogilvie and Tuck [5] and Stokes Theorem, derived
(40) as well as (11–30). For surface vessels, these latter equations contain an error because they neglect an
integral along the waterline which is small for slender ships. In the case of underwater vehicles, this error
does not occur at all. However, STF use a different approach to finding hj and derive an equation in which
these sectional diffraction forces are proportional to ωo not to ω. Whether or not ωo or ω should be used
depends, amongst other issues, on the interpretation of the “zero-forward-speed force”. As described pre-
viously, ω should be, and was, used in the free-surface boundary condition in solving for the 2-dimensional
stripwise diffraction potential. This potential has a time variation of exp(iωt). In calculating the pressure on
the vehicle at zero forward speed, which is used in evaluating (42), the quantity ω, as shown in (42) is the
result of the time-dependent Bernoulli equation. If the pressure on the moving vehicle is to be determined,
and with a presumed spatial variation of exp(−ikx cos(θ)), ωo rather than ω would appear in (42). As will
be shown subsequently, the comparison between theory and experiment is superior when ω is used.

4.5 Non-lifting forces on the vehicle

Once the two-dimensional radiation and diffraction potentials are determined by numerical solutions of
Eq. 39 for about 35 sections along the vehicle, Eqs. 40–43 can be solved and used in a numerical imple-
mentation of Eqs. 11–30 to obtain the added masses, the damping coefficients, and the wave forces on the
vehicle for sway, heave, pitch and yaw.

There is uncertainty about the zero-forward-speed sectional diffraction force which is taken here as
being proportional to ω rather than ωo. To put this matter to rest, experimental results are compared with
numerical results for |F3| and |F5| based on using both ω and ωo in the theory. The experiments were
conducted in head and stern seas in 1.52 m deep water on a 1.58 m long REMUS vehicle whose geometry
is described by Von Alt et al. [8]. The experiments, which are described in detail by Sabra [9] and put in the
graphical form used here by Rybka [10], covered forward speeds from 0.515 to to 2.06 m/s, wavelengths
from 0.792 to 5.34 m, and vehicle centerline submergences from 0.285 to 0.857 m. The radius of REMUS,
apart from fins and transducers is 0.095 m.

Figure 4 is a set of graphs, for these conditions, of experiment results versus theoretical results using
ω and ωo in (42). The experimental data contains both head seas and stern seas, except for the cases of
supercritical operation in stern seas when the wave speed exceeds the vehicle speed. The straight lines in
the sub-figures are for the perfect correlation of experiment vs. theory. The correlation between theory
and experiment is better when ω rather than ωo is used in (42). This is in spite of the fact that ωo is used
in the free-surface boundary condition in solving Eq. 39 for φd, an apparent inconsistency. The reasons
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Fig. 4 Comparison of theory and experiment for heave force and pitch moment. (a) and (c) — ω used in (42). (b) and
(d) — ωo used in (42)

the superiority of using ω, rather than ωo, in Eq. 42 for the underwater vehicle problem considered here,
remains to be investigated.

5 Forces and moments due to lift forces on the fins

5.1 Fin lift force and moment formulations

The general case of fin planforms at arbitrary azimuth angles results in coupling of the horizontal plane
and vertical plane equations by lift forces on oblique fins. Here the case of fins whose planforms lie in
horizontal and in vertical planes will be considered.

The lift forces on fins are approximated in a quasi-static way since wavelengths that influence the vehicle
are very much longer than fin chord lengths.

An approximate linearized theory for the lift force on the mth fin is:

f fm = 1
2
ρU2AmσmCLσm, (44)

where Am is the effective planform area of the fin, σm is the angle of incidence and CLσm is the lift coefficient
per unit angle of attack (in radians).

For vertical fins the yaw moment from f fm is:

f f6m =f fmxm (45)

and for horizontal fins the pitch moment from the fin is:

f f5m = −f fmxm, (46)

where xm is the longitudinal location of the center of lift force of the fin, usually approximated at the mean
quarter chord of the fin.
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Fig. 5 Side view of the
REMUS vehicle. The
vehicle length is 1.58 m. It
was tank tested and
seakeeping computations
were done without the
propeller

The linearized angle of incidence is the crossflow, Vm, generated by vehicle motions and sea waves
divided by the forward speed, U, plus the unsteady angle of the vehicle. Thus the equation for the lift force
on a single fin becomes:

f fm = 1
2
ρVmUAmCLσm + 1

2
ρU2AmσTmCLσm, (47)

where σTm is the vehicle angle, pitch or yaw, which imposes an angle of incidence on the mth fin. The first
term in Eq. 47 is proportional to unsteady velocities, Vm, so it contributes either to wave forces or damping
forces, whereas the second term is proportional to unsteady vehicle angles, so it contributes to restoring
“spring” constants in the equations of motion.

For any fin, or set of fins, it is necessary to estimate the effective area, Am, the center of fin lift force,
xm, and CLσm. The experiments, whose results will be compared with the theory, were done on a REMUS
class vehicle [8] which has four identical tail fins in a cruciform shape. A drawing of REMUS, viewed
from the side, is shown in Fig. 5. The spans, perpendicular to the hull, of the sonar transducers and ballast
bracket are so small that their lift force is negligible. Their influence on the potential-flow added mass,
damping coefficients and wave forces is included since they are part of the vehicle shape used in solving
the potential-flow problem. Figure 6 shows details of the vertical planform of the tail fins. The horizontal

Fig. 6 Vertical profile of the tail section of the REMUS autonomous under-
water vehicle

Fig. 7 Equivalent fin
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tail fin is identical. Experiments by Oller [11] have shown that the effective vertical tail fin of REMUS
is comprised of the two vertical fins and the section of the vehicle centerplane formed by connecting the
fin-root leading edges and the fin-root chord leading edges and the fin-root trailing edges as shown in Fig. 7.
This effective fin has an area of 0.02 m2, a mean longitudinal quarter chord location with respect to the
vehicle midship of x = −0.7 m and aspect ratio (AR) of 3.23. For AR between 3 and 5, Hoerner and Borst
[12] predict values of CLσ with their formula converted from degrees to radians, as:

CLσ =
[

0.175 + 0.175
(AR)2 + 0.454

(AR)

]−1

. (48)

Equation 48 is developed for straight wings with rounded tips, but similar results are found for other
planforms [12] so that Eq. 48 can be used for most vehicle-fin planforms.

The experimental values of CLσ found by Oller [11] are nearly independent of vehicle submergence and
have an average value of 3.04 in good correspondence with (48). For the REMUS equivalent tail fins, each
with AR 3.23, Eq. 48 results in CLσ = 3.01.

5.2 Wave forces and moments due to fin lift

In water of depth h, the linearized wave elevation, ς , for a propagation angle θ , measured clockwise from
the positive x-axis, and encountered from the moving vehicle is:

ς = α exp[i(ωt − kx cos θ + ky sin θ)]. (49)

The related velocity potential is:

φ = α
iω0

ksinh kh
exp[i(ωt − kx cos θ + ky sin θ)]cosh k(h + z). (50)

For this wave, at location (x, y, −s), the vertical, positive upward, wave-induced fluid velocity, w, is:

w = iωoα

sinh kh
exp[i(ωt − kx cos θ + ky sin θ)] sinh k(h − s) (51)

and the y-directed wave-induced horizontal fluid velocity, v, is:

v = −ωoα sin θ

sinh kh
exp[i(ωt − kx cos θ + ky sin θ ] cosh k(h − s), (52)

where ωo is the circular frequency of the wave in a fixed frame of reference.
Vehicles whose fins lie in vertical and horizontal planes usually have their planes in symmetrical pairs.

For example, if a vehicle has a vertical fin above its centerline, it will usually have a mirror image vertical
fin below the centerline as shown in Fig. 5. The vertical center of lift of the combination of fins and the
lifting portion of the vehicle between them is at the centerline submergence for a vehicle with up-down hull
symmetry. Furthermore, the length scales of the fins are generally much smaller than the wavelengths of sea
waves. As a result, the value of s in (51) and (52) can be taken as the centerline submergence of the vehicle.

Similarly, horizontal planes generally exist in symmetrical pairs so the value of y in (51) and (52) can be
taken as zero. Some underwater vehicles have three fins in a cross plane and these require a modification
to what is presented here.

The fin lift forces due to sea waves come only from wave-induced angles of attack so they are described
by just the first term on the right-hand side of (47). Thus, linearized wave forces and moments due to lift
forces on the fins are:

f F2 =
∑

m-Vertical

1
2
ρUAmCLσm

−ωoα sin θm

sinh kh
exp[i(ωt − kxm cos θm)] cosh k(h − s), (53)

f F3 =
∑

m-Horizontal

1
2
ρUAmCLσm

iωoα

sin kh
exp[i(ωt − kxm cos θm)] sinh k(h − s), (54)
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f F5 =
∑

m-Horizontal

− 1
2
ρUAmCLσmxm

iωoα

sin kh
exp[i(ωt − kxm cos θm)] sinh k(h − s), (55)

f F6 =
∑

m-Vertical

1
2
ρUAmCLσmxm

−ωoα sin θm

sinh kh
exp[i(ωt − kxm cos θm)] cosh k(h − s), (56)

where m-Vertical is the group of fins with vertical planforms and m-Horizontal is the group of fins with
horizontal planforms.

5.3 Damping coefficients due to fin lift

When a vehicle with forward speed U has unsteady vertical motion η3 = N3eiωt, in its own reference frame
it experiences vertical velocity −η3 = −iωN3eiωt, so that the complex amplitude of the linearized angle
of incidence on horizontal fins is −iωη3/U. This generates heave force and pitch moment contributions
from lift on horizontal fins which are proportional to the heave velocity. Thus, they are damping forces and
moments. Using the first term on the right-hand side of (47) for the fin lift, the damping coefficients from
the lift on all horizontal fins are:

f B33 =
∑

m-Horizontal

1
2
ρUAmCLσm, f B53 =

∑

m-Horizontal

−1
2
ρUAmCLσmxm, (57)

where f B33 is always positive, but f B53 can be positive or negative, depending on the sign of xm. Similarly
the sway damping coefficients due to sway motion induced velocities on vertical fins are:

f B22 =
∑

m-Vertical

1
2
ρUAmCLσm, f B62 =

∑

m-Vertical

−1
2
ρUAmCLσmxm. (58)

For pitch motion, η5 = N5eiωt, the vertical velocity of a fin at longitudinal position xm is: −iωxmN5eiwt.
This leads to

f B55 =
∑

m−Horizontal

1
2
ρUx2

mAmCLσm, f B35 =
∑

m-Horizontal

−1
2
ρUxmAmCLσm (59)

and the damping coefficients due to yaw are:

f B66 =
∑

m−Vertical

1
2
ρUx2

mAmCLσm, f B26 =
∑

m-Vertical

−1
2
ρUxmAmCLβm. (60)

5.4 Restoring force constants due to fin lift

When the vehicle has a non-zero yaw angle, η6, fins with vertical planforms have an associated angle of
incidence, and when there is a non-zero pitch angle, η5, fins with a horizontal planforms have an associated
angle of attack. This causes fin lift through the second term on the right-hand side of (47). Since the lift
forces are proportional to yaw or pitch angle, they can be described as restoring force “spring” constants,
C26, C66, C35, and C55. These are given by

C35 =
∑

m-Horizontal

1
2
ρU2AmCLσm, C55 =

∑

m-Horizontal

−1
2
ρU2AmxmCLσm, (61)

C26 =
∑

m-vertical

−1
2
ρU2AmCLσm, C66 =

∑

m-vertical

−1
2
ρU2AmxmCLσm. (62)
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Fig. 8 Computational comparison of magnitude and phase of F2 at zero speed

6 Validation of strip theory for underwater vehicles

6.1 Numerical implementation of the theory

The theory was numerically implemented by starting with the cross-section panel method briefly described
previously. Rybka [10] describes the number of panels and their distribution on the external boundary
required for numerical convergence. Cross-section number and spacing depend on the vehicle shape. The
external transducers and fins usually determine the number of cross-sections required to specify the vehicle
shape since the hulls are slender. Usually 20 unequally spaced cross-sections capture the vehicle shape and
wave variations along the length sufficiently well. Numerical convergence in the solution to (39) is typically
achieved with 16 panel segments on the basic hull, four panels on each side of each fin, one or two panels
along each side of each transducer, and one or two panels on the fin tips or on the outermost part of each
transducer. Due to the unequal spacing between cross-sections, the integrals in Eqs. 11–30 are done with
the Trapezoidal Rule. The contributions to the vehicle-force coefficients from fin lift forces were calculated
according to Eqs. 57–62, and added to the potential-flow force coefficients according to (2).

6.2 Computational verification

Rybka [10] has done a thorough comparison of the results of the strip theory, at wave angles of 0, 45, 90, 135
and 180◦, with results from the fully three-dimensional computer program WAMIT [13] which deals with
the zero-forward-speed linearized wave and motion forces on an object in the ocean. WAMIT, developed
over many years under the supervision of Professor John Nicholas Newman, has been fully verified for
numerical accuracy and convergence. Outstanding correspondence for diffraction (magnitude and phase)
and radiation force results between the two programs was obtained except for the diffraction pitch and
yaw moment magnitudes in beam seas, θ = π/2 (90◦), where differences of 30% occur. Figure 8 shows a
typical comparison for all other wave angles. It is for diffraction sway forces for 21 computer runs of both
the strip theory and WAMIT on the REMUS vehicle with a wave angle of 135◦ (bow quartering seas) and
water depths of 1.52 and 5.0 m, submergences varying between 0.476 and 2.0 m, and wavelengths varying
between 5.0 and 30.0 m. Each of the 21 runs has a distinct set of parameter values in the ranges and depths
given above. The straight lines in the sub-figures indicate perfect correspondence. For the phase, many
points are on top of each other. Importantly, there are no first-order fin lift forces at zero forward speed so
this comparison does not include a major component of this strip theory.
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6.3 Experiments

Two sets of experiments were conducted. In each of them a 6-axis force and moment transducer was
mounted to a bulkhead inside the vehicle. A strut which was connected to the mechanism that moved the
vehicle was attached to the transducer by passing through a small hole in the top of the hull. The first
set of experiments was for measuring the wave forces and moments on a steadily moving full size 1.58 m
long REMUS vehicle [8] in the smaller of the two wave/towing tanks at the U.S. Naval Academy with
a water depth of 1.52 m. The vehicle-centerline submergence was varied between 0.285 and 0.875 m, the
vehicle speeds between 0 and 2.06 m/s, and the wave lengths between 0.792 and 6.340 m. The experimental
wave amplitudes between 0.006 and 0.054 m were half of the planned amplitudes due to the tank operators
interpreting specified amplitudes as wave heights. The largest specified amplitudes were based on the capa-
bilities of the wave maker in the tank. Waves were measured by a moving wave staff attached to the tow
carriage and the measured wave phase was shifted theoretically to account for the longitudinal distance
between the wave staff and the vehicle midship. With forward speed, the geometry of the tank required
head seas or stern seas. At zero speed, all wave angles could be tested. Analyses for the amplitude and
phase of waves and forces [9,11] were done by taking Fourier transforms of the measured data. To have
wave frequency correspond to one frequency in a Fast Fourier Transform (FFT), it was important to select
a data segment with an integer number of cycles. This was an imprecise process because of noisy data.
The results showed repeatability of resulting amplitudes, but force-phase estimates for identical conditions
varied by up to ±0.7 radians (40◦). For a few points the theory versus experiment phase differences were
even larger. Most of the phase difference is attributed to experimental error. This difference did not appear
in the strip theory versus WAMIT comparisons shown by Rybka [10].

A measure of the accuracy of the wave force data is provided by 25 pair of the data runs (50 runs) where
for each pair all parameters were identical except for the wave amplitude which varied by a factor between
1.5 and 2. Since the forces were found to be linear in wave amplitude, experimental accuracy can be, at
least partially, assessed by comparing the ratios of force or moment divided by wave amplitude, yielding
normalized forces and moments, in each of these pair of runs. For zero error, these pair of ratios would
be identical. In other words, the normalized ratios of forces and moments for each pair of runs would
be 1.0. For all 25 pair of runs, the RMS values of the deviation from unity of these ratios were 7.3% for
the forces and 10.4% for the moments. Again, for zero error the phases of the forces and moments with
respect to the wave phase would be identical. For six pair of the runs, the phases differed by more than
a few degrees. However, in each of these six pair of runs, the difference in force phases was within a few
degrees of the difference between moment phases. This is indicative of an error in assessing the phase of
the wave elevation. Of the remaining 19 pair of runs, the RMS value of the deviation of the phases from
identical was 8.8◦ for the forces and 7.3◦ for the moments. The wave force experiments are considered to
be of excellent quality.

The second set of experiments [11], for forces induced by vehicle oscillations in the presence of forward
speed, was conducted on an 0.4334 scale model of REMUS in a tank with a programmable 5-axis gantry
above and in the tank at the Massachusetts Institute of Technology (MIT). Building the gantry, and writing
the software to operate the gantry, accept force transducer output through an analog to digital converter,
a PC computer and give synchronized output of forces and motions was done by Mr. Paul D’Ambra of
D’Ambra Technologies, Inc. in Andover Massachusetts. Inertial forces due to the mass of the model vehicle
were subtracted from the measured forces to obtain the hydrodynamic forces and moments on the vehicle.
Many problems occurred with the gantry hardware and its operating and measurement software, largely
because operational frequencies were higher than those the hardware and software of the gantry were
designed and built to provide. During the 2-year period of this portion of the project, while much data were
collected, continuous improvement of the gantry hardware and software, were conducted Paul D’Ambra.
His unfortunate death ended the improvements. As a result, only the 20 final experimental runs, five for
each of the motions of sway, heave, yaw and pitch, out of the several hundred runs conducted, are the most
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Fig. 9 Comparison between experiment and strip theory of the magnitude of the heave wave force

accurate, but their data must still be considered qualitative. It is important; nevertheless, because, when the
vehicle has forward speed, the data confirm the theoretical finding that fin lifting forces dominate damping
coefficients and generate restoring “spring” constants.

6.4 Comparison of strip theory and experimental results

The wave forces, magnitudes and phases, of the REMUS vehicle, were extracted from the measured data
by Sabra [9], and these were compared with results of the strip theory which includes the influence of
fin lift by Rybka [10]. Although there is noticeable scatter in the experimental results, generally good
agreement was found between the results of strip theory and the experiments, especially for force and
moment magnitudes. The only cases of serious disagreement are the zero-speed pitch and yaw-moment
magnitudes from beam seas, θ = π/2 radians, for which the theory gives values that are about 33% of the
experimental measurements. Since the beam sea pitch and yaw moments, in a coordinate system whose
origin is centered on the vehicle length, result from deviation in fore and aft symmetry, they are very small;
about 7% of the head and stern sea pitch moments in the same waves. Thus, the numerical difference
between strip theory and experimental pitch and yaw moments in beam seas is small in comparison to head
and stern sea pitch moments. Furthermore, tank-wall effects on forces and moments are largest for zero
speed. It is possible that the still small wall effects are not noticeable in the larger fundamental sway and
heave forces, but significant in comparison to the very small beam sea sway and pitch moments. Figures
9 and 10 show the comparison between the strip theory and experimental heave force, F3, in head seas
(θ = π radians) and with the vehicle having forward speed. The other theoretical versus experimental
wave force and moment comparisons, except for the beam sea pitch and heave moment amplitudes, are
similar and given by Rybka [10]. strip theory including the influence of fin lift is shown in the figures by
triangles, and the strip theory without fin lifting influences is shown by squares. The parameter ranges are
given above. The exact combinations of these parameters used for each run are given by Sabra [9].

Each experimental data point in Figs. 9 and 10 appears twice, once as a square, compared to strip theory
without fin lift, and once as a triangle, compared with the strip theory that includes fin lift forces. These
two points are on a horizontal line. For |F3| including the lift forces improves the theory versus experi-
ment correspondence, but for phase of (F3) including fin lift improves correspondence in most cases and
degrades correspondence in eight cases. However, the nature of the experiments was such that magnitudes
were determined much more accurately than phases. In view of this, Fig. 9 shows, unambiguously, the need
to include fin lifting forces in the theory, at least for relative fin area as large as on REMUS. Results similar
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Table 1 Experimental and strip theory force coefficient for vehicle yaw oscillary motion

Experiments, yaw motion amplitude = 10◦ Theory - no fin lift Theory with fin lift

s U ω Yaw-M Phs A66 B66 Yaw-M Phs A66 B66 Yaw-M Phs B66 A66c C66
(m) (m/s) (rad/s) (N-m) (deg) (Kg-m2) (N-m-s) (N-m) (deg) (Kg-m2) (N-m-s) (N-m) (deg) (N-m-s) (Kg-m2) (N-m)

0.293 0.333 7.517 0.814 −32 0.070 0.325 1.219 −1 0.123 0.018 1.211 −11 0.183 0.120 0.19
0.293 1.000 7.517 1.114 −34 0.093 0.477 1.738 −1 0.176 0.027 1.599 −25 0.524 0.146 1.68
0.584 0.333 2.531 0.130 −21 0.108 0.106 0.204 −1 0.183 0.005 0.187 −24 0.170 0.154 0.19
0.584 0.333 7.517 0.828 −32 0.071 0.336 2.382 0 0.127 0.001 2.357 −10 0.166 0.124 0.19
0.293 0.667 2.531 0.350 −23 0.289 0.306 0.404 −1 0.362 0.010 0.312 −29 0.341 0.245 0.75
0.584 1.000 4.980 0.497 −28 0.102 0.267 1.245 −1 0.259 0.012 0.941 −28 0.509 0.191 1.68

to Figs. 9 and 10 were found for all of the wave forces and moments in the experiments except in stern seas
with enough forward speed for ω to be negative or for 4U2/(Lω)2 > 7.

Table 1 shows yaw-motion parameters and a few results for the 43.34% scale model of REMUS with
a water depth of 0.795 m. The experimental results are rough, so that the experimental yaw moment, its
phase, A66 and B66 are not closely matched by the strip theory, either with or without fin lift. However, the
fin lift brings the results of theory closer to experimental values. Importantly, the yaw-moment phase and
B66 from theory without fin lift are extremely small. Fin lift makes the moment phase and B66 closer to
the experiments in all cases. Dominance of fin lift on damping coefficients from other motions was found
as well. In view of experimental difficulties, the results of strip theory with fin lift are likely to be more
accurate than the experiments. For ω = 2.531 s−1, the zero forward speed “typical” wavelength given by
the dispersion relation ω2 = kg tanh kh is 6.33 m which is considerably larger than the model scale vehicle
length of 0.685 m. The phase speed of these waves is 2.55 m/s which is large in comparison to the values of
U tested for this frequency so that ω ≈ ωo.

Without fin lift, the usual strip theory gives zero for the restoring moment “spring” constant, C66. How-
ever, with aft vertical fins on REMUS strip theory with fin lift yields positive values of C66. The real part of
the yaw moment divided by the yaw motion amplitude in radians is ω2A66 − C66. If the entire real part of
the yaw moment is attributed to A66 and C66 is taken as zero, as was done in analyzing the experiments, the
value of the apparent yaw added mass will be A66c = A66 − C66/ω

2. Values of A66c determined from the
strip theory with fin lift are shown in Table 1. The experimental values of A66 differ less from theoretical
A66c values than they do from the theoretical A66 values which are independent of fin lift. This is an
important finding.
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7 Computation time

Fast and efficient computation was obtained by developing the programs in MATLAB, optimizing them,
and compiling them into executable modules using the MATLAB Compiler. This converts the MATLAB
m-files into equivalent source code in the C programming language and then compiles the C-source code
into the executable modules. The process from the m-files to the executable modules is “transparent” to
the user. For each set of conditions, if many conditions are computed at the same time, the run time for
the diffraction program is 0.2 s on a 3 GHZ PC. This computing time is for the REMUS vehicle, using 36
cross-sections with between 16 and 44 panels per section, depending on fin and transducer details. The
radiation problems have not yet been optimized and compiled, so the computing time in MATLAB is
about 45 s for each set of conditions. However, the computing steps for each of the horizontal and vertical
plane radiation problems is nearly the same as for the diffraction problem, so the optimized and compiled
radiation code is expected to run in about 0.4s for each set of conditions.

8 Conclusions

Strip theory, including the effects of finite depth and lift forces on fins is a fast-computing and accurate way
to predict the unsteady seakeeping forces on streamlined underwater vehicles close enough to the surface
to be influenced by sea waves. With these forces known, the frequency responses of vehicle motions due to
sinusoidal waves of specified amplitude, frequency and phase, can be computed by the algebraic equations
provided by Rybka [10, Section 8.2]. These results are suitable for random-wave simulations [3].

The comparison between force and moment magnitudes of numerically implemented theory and exper-
iment is good in most conditions in the sense that errors are about the same relative size as in many
comparisons between theory and experiment for strip theory applied to ships. In a large data set of
REMUS diffraction forces with magnitudes between 0 and 35 N and moment magnitudes between 0 and
25 N-m, typical magnitude errors are on the order of 0 to 1 N for forces and 0 to 0.5 N-m for moments, except
that the Strip theory and experiment differ in beam seas and in stern seas with large enough forward speed
for ω to be negative or for 4U2/(Lω)2 > 7. Evidently, this parameter influences the diffraction problem
as well as the radiation problem. Differences between theory and experiment for magnitudes of beam sea
pitch and yaw moment magnitudes are large, with differences up to 4 N-m. Part of this is experimental
error, but much of it must be attributed to failure of the theory to predict accurate results in beam seas.
None of this larger error appears in Rybka’s comparisons for quartering seas (θ = 45◦ and 135◦), so the
larger error must be limited to a small wave propagation angle range centered on 90◦.

The difference between theoretical and experimental diffraction force and moment phases typically
varies between 0◦ and 40◦ and is larger for a few data points. This appears to be due to experimental error,
but even if the theory yields erroneous wave force phases, it may not influence motion simulations since
each sinusoidal component is assigned a random phase.

A significant contribution of this strip theory is inclusion of fin lift forces. They generate restoring
forces and moments for motions in pitch and yaw, they generally dominate all vehicle motion damping
coefficients, and they significantly influence wave forces.
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